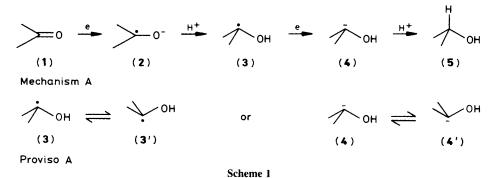
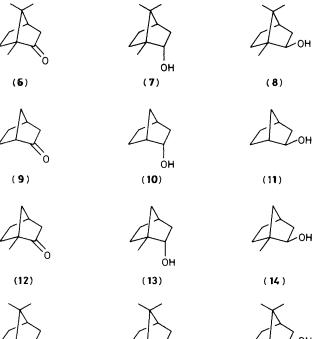
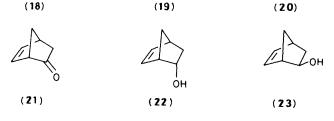
Endo-Selectivity and Kinetic Control in Alkali Metal–NH₃–NH₄⁺ Reductions of Bicyclo[2.2.1]heptan-2-ones


Valentin Rautenstrauch

Firmenich SA, Research Laboratories, CH-1211 Geneva 8, Switzerland


Reduction of five bicyclo[2.2.1]heptan-2-ones (6), (9), (12), (15), (18) and the parent bicyclo[2.2.1]hept-5-en-2-one (21) by alkali metals dissolving in NH₃ and a cosolvent saturated with NH₄Cl affords in every case predominantly (83—>99%) the corresponding *endo*-alcohol (7), (10), (13), (16), (19), and (22), and since two of these *endo*-alcohols are the thermodynamically more stable [(7), (19)] and two the less stable [(10), (13)] isomers, these reductions are probably all kinetically controlled; a correlation is made between this *endo*-selectivity and *exo*-hydrogen-exchange in the ketones (6), (9), (12), (15), and (21).


Dissolving metal reductions of ketones in general and alkali metal–NH₃ reductions of ketones in particular frequently lead to the thermodynamically more stable diastereoisomeric alcohol.¹ A general mechanistic rationale has evolved for these synthetically and theoretically important reactions. This consists of a sequence of reduction and protonation steps: ketone $(1) \xrightarrow{e}$ ketyl $(2) \xrightarrow{H^+}$ ketyl radical $(3) \xrightarrow{e}$ hydroxycarbanion

 $(4)^{H+}$ alcohol (5) (mechanism A, Scheme 1), with the elaborate proviso that the diastereoisomeric, pyramidal species (3) and/or (4) equilibrate, that these equilibria parallel those between the diastereoisomeric alcohols (5), and that (3) and/or (4) are then reduced and/or protonated indiscriminately (*i.e.* with similar rates) to afford the diastereoisomers (5) in close to their equilibrium ratio (proviso A, Scheme 1).¹

~ <

The equilibration(s) of (3) and/or (4) would thus, in effect, provide thermodynamic control.

In the 1960s, many exceptions to the above empirical rule were noted. Reduction of various bicyclo[2.2.1]heptanones, steroid ketones, and diterpene ketones by sodium in alcohols or by alkali metals in NH_3 alone or in combination with proton sources (usually alcohols, rarely NH_4Cl) were found to give

1559

predominantly the less stable alcohols.^{1c-e} The above rule was accordingly modified to the effect that strained or sterically hindered ketones may give the less stable isomers.^{1c}

In 1981—82, we uncovered evidence which suggested that, in fact, alkali metal–NH₃ reductions proceed only by mechanism A when NH₄⁺ is the proton source.^{1b} An entirely different, bimolecular mechanism was found to take over in the presence of less acidic proton sources or in NH₃ alone.^{1b,e,2} The textbook mechanism A is thus only valid for one extreme type of alkali metal–NH₃ reduction. Whether or not it also correctly describes other dissolving metal (and electrochemical) reductions, in particular Na–ROH reductions, is not clear.

In this context, we took the fact that alkali metal- NH_{3} - NH_{4}^{+} reduction of camphor (6) gives mainly borneol (7),^{1b,3} the more stable *endo*-isomer, as evidence for proviso A.^{1b} Huffman, however, pointed out^{1e,4} that we had overlooked that norcamphor (9) had long been known to give the less stable *endo*-norborneol (10) upon alkali metal- NH_{3} - NH_{4}^{+} reduction.^{3b,4a,5}

This invalidated proviso A, but suggested that bicyclo-[2.2.1]heptanones might in general afford the *endo*-alcohols upon alkali metal-NH₃-NH₄+ reduction, regardless of whether they are thermodynamically favoured or not. This has now been checked and found to be so in six cases. Two further cases were already reported⁵ and two more examples have been added. Up to now there are no exceptions. Equilibrium ratios for five of the six diastereoisomeric alcohol pairs were also in the literature.^{6,7} The data are collected in Table 1. Note that the endo/exo ratios are virtually the same for dissolving Li, Na, or K, which suggests that free ketyls (2) and free carbanions (4) are protonated and reduced.^{1b,2b} Note also that the same endo/exo ratio is obtained regardless of whether (+)-camphor [(1R)-(6)] or its racemate [(1RS)-(6)] is the substrate, which independently shows that the bimolecular pathway does not interfere.^{1b,e,2}

The reductions of (9), (12), and (21) are thus under kinetic control and this suggests that alkali metal $-NH_3-NH_4^+$ reductions in general are under kinetic control.⁺ This requires that

[†] The following may confuse the reader and evoke a sense of $d\acute{e}j\acute{a}$ -vu. The conclusion *per se* that kinetic control operates in dissolving metal reductions.⁹ the assumption *per se* that protonation rates may control their stereochemistry.¹⁰ and even the correlation between the stereochemistry of the reductions and of exchange.¹¹ were arrived at previously, but in different contexts. The reductions described in ref. 9 proceed by a mechanism different from mechanism A^{1b,e,2} (there was also no clear-cut *endo*-preference in ref. 9), the discussion in ref. 10(b) refers to Na-ROH reductions, and the discussion in ref. 10(a) to dissolving metal reductions in general in terms of the early Barton dianion mechanism.^{1a} and the correlation in ref. 11 concerns Zn-HOAc reductions of two bicyclo[2.2.1]heptan-2,3-diones. The present conclusions refer specifically to alkali metal-NH₃-NH₄+ reductions and to mechanism A-proviso A.

Table 1. Alkali metal– NH_3 – NH_4 ⁺ reductions of bicyclo[2.2.1]-heptan-2-ones and -hept-5-en-2-one and equilibrium ratios for the corresponding alcohols.

Ketoneª	<i>endo</i> Alcohol	<i>exo</i> Alcohol	Alkali metal	Cosolvent	Temperature /°C	Reduction endo/exo ratio	Ref.	Equilibrium endo/exo ratio (equilibrium temperature)	Ref.
(1 <i>R</i>)-(6)	(1R)-(7)	(1 <i>R</i>)-(8)	Li	Et ₂ O	-33	92: 8	3a	89:11(-75)	6
"	,,	,,	К	,,	,,	90:10	••	84:16(-33)	
(1 <i>RS</i>)-(6)	(1RS)-(7)	(1 <i>RS</i>)-(8)	Li	,,	-78ª	90:10	3ba		
,,	,,	,,	Na	••	,,	89:11	,,		
••	, ,	••	К	,,	• •	88:12	••		
(1 <i>R</i>)-(6)	(1 <i>R</i>)-(7)	(1 <i>R</i>)-(8)	Li	,,	-33	94: 6	3c		
· ,, ·	,,	,,	Na, K	,,	••	90:10	,,		
••	••	,,	Li, Na, K	THF ^b	-75	94: 6	1b		
(1 <i>RS</i>)-(9)	(1 <i>RS</i>)-(10)	(1 <i>RS</i>)-(11)	Li, Na	Et ₂ O	-78ª	89:11	3b	5:95(-75)	6
,,	· ,, · ,	,, ,, ,,	ĸ	-, ,	,,	90:10	,,	8:92(-33)	
,,	,,	,,	Li	••	-33	89:11	5ª		
• •	• •	••	,,	••	••	85:15	4a		
(1 <i>RS</i>)-12)	(1 <i>RS</i>)- 13)	(1 <i>RS</i>)-14)	,,	,,	••	91: 9	5ª	ca.40:60(170)	6
(1 <i>R</i>)-(15)	(1 <i>R</i>)-(16)	(1 <i>R</i>)-(17)	,,	,,	,,	83:17	5ª	unknown	
(1 <i>R</i>)-(18)	(1 <i>R</i>)-(19)	(1 <i>R</i>)-(20)	,,	THF	-75	>99:1	This work	ca.72:28 (170)	6
(1 <i>R</i>)-(21)	(1 <i>RS</i>)-(22)	(1 <i>RS</i>)-(23)	,,	,,	••	99:1	This work	ca.50:50(110)	7

^a In ref. 3b, the substrate was (1RS)-(6): see ref. 2b. In ref. 5, the substrates were (1RS)-(9), (1RS)-(12), and (1R)- or (1S)-(15): see ref. 8. The reaction temperature in ref. 3b was -78 °C: see note 7 in ref. 4a. ^b THF = tetrahydrofuran. ^c Method of ref. 1b: to a cooled (-75 °C), stirred solution of 2 mmol substrate [(18), (21)] in 35 ml NH₃ and 10 ml THF containing 30 mmol largely suspended NH₄Cl, 20 mmol Li was added which dissolved/reacted within 55 min [(18)] and 5 min [(21)]. Work-up gave mixtures of 11% (18), 89% (19), with (20) not detectable (by g.c.), and 20% (21), 79% (22), 0.9% (23).

proviso A be revised. (Mechanism A is not affected.) The simplest and most reasonable revision is that the protonation of the hydroxycarbanion (4) determines the stereochemistry. $^+,^+$ Accordingly, protonations of the hydroxycarbanions derived from bicyclo[2.2.1]-heptan-2-ones and -hept-5-en-2-ones (rapidly equilibrating pyramidal carbanions or planar carbanions?) from the *exo*-side appear to be preferred. $^+$

Strikingly, this postulated preference for *exo*-protonation in the reductions [at C(2)] can be correlated with the preference for exchange of the *exo*-H-atom on the adjacent C-atom [C(3)] in the same bicyclo[2.2.1]-heptanones and -heptenones, \dagger a phenomenon discovered 20 years ago in these laboratories and still not fully understood.¹² The correlation supports the hypothesis that a protonation step determines the stereochemistry of the reductions and suggests common causes for both phenomena.

Received, 25th June 1986; Com. 880

References

1 (a) D. H. R. Barton and C. H. Robinson, J. Chem. Soc., 1954, 3045; (b) V. Rautenstrauch, B. Willhalm, W. Thommen, and

U. Burger, *Helv. Chim. Acta*, 1981, **64**, 2109, and references therein; reviews: (c) H. O. House, 'Modern Synthetic Reactions,' 2nd edn., ch. 3, Benjamin, Menlo Park, 1972; (d) A. Rassat, *Pure Appl. Chem.*, 1977, **49**, 1049; (e) J. W. Huffman, *Acc. Chem. Res.*, 1983, **16**, 399.

- 2 (a) V. Rautenstrauch and M. Geoffroy, J. Am. Chem. Soc., 1977,
 99, 6280, 8373; (b) V. Rautenstrauch, Helv. Chim. Acta, 1982, 65, 402.
- 3 (a) G. Ourisson and A. Rassat, *Tetrahedron Lett.*, 1960 (no. 21), 16; (b) J. W. Huffman and J. T. Charles, *J. Am. Chem. Soc.*, 1968, 90, 6486; (c) W. S. Murphy and D. F. Sullivan, *J. Chem. Soc.*, *Perkin Trans. 1*, 1972, 999.
- 4 (a) J. W. Huffman, R. C. Desai, and J. E. LaPrade, J. Org. Chem., 1983, 48, 1474; (b) J. W. Huffman, personal communication, Dec. 1981.
- 5 A. Coulombeau and A. Rassat, Bull. Soc. Chim. Fr., 1970, 4404.
- 6 A. Coulombeau and A. Rassat, Bull. Soc. Chim. Fr., 1970, 4393.
- 7 A. Rassat, Ph.D. Thesis, Paris, 1961.
- 8 A. Coulombeau and A. Rassat, Bull. Soc. Chim. Fr., 1970, 4399.
- 9 (a) A. Coulombeau and A. Rassat, J. Chem. Soc., Chem. Commun., 1968, 1587; (b) A. Coulombeau, Bull. Soc. Chim. Fr., 1970, 4407.
- 10 (a) D. A. H. Taylor, J. Chem. Soc., Chem. Commun., 1969, 476;
 (b) A. J. Fry and R. G. Reed, J. Am. Chem. Soc., 1969, 91, 6448.
- 11 C. Coulombeau and A. Rassat, Bull. Soc. Chim. Fr., 1970, 1199. 12 A. F. Thomas and B. Willhalm, Tetrahedron Lett., 1965, 1309;
- A. F. Thomas, 'Deuterium Labeling in Organic Chemistry,' ch. 4, Appleton-Century-Crofts, New York, 1971; for a recent review, see J. Toullec, Adv. Phys. Org. Chem., 1982, 18, 1; for the most recent paper on the subject, see N. H. Werstiuk and S. Banerjee, Can. J. Chem., 1985, 63, 534.

[‡] Added in proof. Another possibility is that the endo-exo equilibria for the ketyl radicals (3) derived from bicyclo[2.2.1]heptan-2-ones favour the radicals with the OH group endo, thus do not parallel those for the corresponding alcohols as assumed previously (proviso A).